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ABSTRACT 

Different from previous work that measured robustness its own distribution, measuring robustness with a robust 

estimator on a generalized Gaussian distribution is introduced here. In detail, an unbiased Maximum Likelihood 

(ML) variance estimator and a robust variance estimator of the Gaussian distribution with a given censoring 

value are applied to the generalized Gaussian distribution that represents Gaussian, Laplace, and Cauchy 

distributions; then, Mean Square Error (MSE) is calculated to measure robustness. Afterward, how robustness 

changes is shown because the actual distribution varies over the generalized Gaussian distribution. The results 

indicate that measuring the MSE of the system can be used to point out how robust the system is when the 

system distribution changes. 
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I. Introduction 

Many of the techniques used in 

telecommunications, image, speech, and radar signal 

processing rely on various degrees of measuring 

system performance and robustness. To measure 

overall system performance, the degree of 

robustness, which shows how stable a system is, is 

very important. 

A considerable contribution to robustness using 

saddle point criteria has been made by Huber [1-3], 

who censored the height. His work, however, was 

nonquantitative, did not easily admit nonstationary 

data, and gave no direct way to make comparisons 

between multiple systems. Lee and Halverson [4] 

presented a differential geometric approach that 

admitted nonstationary data and offered quantitative 

robustness measurement using a robust estimator 

(the Huber estimator) for its own distribution. Petrus 

[5] used Huber adaptive filters to reject impulse 

noises, Gaussian noises, and undesired sinusoidal 

signals. 

In this paper, a Maximum Likelihood (ML) 

variance estimator (typically unbiased) [6, 7] and a 

robust variance estimator [1-3] are recalled for 

robustness and then applied to the generalized 

Gaussian distribution family and the robust estimator 

measures Mean Square Error (MSE) according to 

the censoring of the height k value. After that, the 

MSE is plotted over the generalized Gaussian (light 

and heavy-tailed) distributions that represents 

Gaussian, Laplace, and Cauchy distributions, and the 

way in which performance (= inverted MSE) and 

robustness vary with each k according to changes of 

the distribution is found. 

This paper is organized as follows. Section 2 

will illustrate the notion of performance and 

robustness. Section 3 will show the measuring of 

MSE. Section 4 will introduce the generalized 

Gaussian distribution and MSE graphs. Section 5 

will conclude. 

 

II. Notion of performance and robustness 

The notion of performance can best be 

understood by noting that an estimator generates a 

multidimensional MSE surface. Fig. 1 illustrates the 

x-axis, which indicates an estimation value, ̂  of the 

distribution; the y-axis indicates the MSE, 
2)̂(  E . If ̂  approaches a true value of θ 

(variance in this paper), the MSE reaches its 

minimum. The ML estimator generates an MSE 

surface resembling an inverted mountain; on the 

contrary, a robust processor might generate an MSE 

surface resembling an inverted plateau. It should be 

noted that if ̂  is sufficiently far away from θ, then 

the robust estimator can have an MSE smaller than 

that of the ML estimator. In other words, a shift 

away from θ will only bring about a small MSE for 
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the robust estimator of this type, but the ML 

estimator has a large MSE. 

 

 

Fig. 1 MSE surface of ML and robust estimator 

 

Robustness [8, 9] can be understood by 

considering Fig. 1 again. For calculation of the 

robustness, the slope of the multidimensional MSE 

surface in Fig. 1 is converted to quantitative values 

using a differential geometric approach [10]. To 

determine the measure of robustness, it is necessary 

to admit a variation rate in the distribution of the 

parameter. Good robustness means a small change of 

output as input varies, resulting in a gentle MSE 

curve. This tells us that measuring the robustness 

indicates the stability of a system. 

 

III. Measuring of MSE 

In this section, how to calculate the MSE in 

cases of Gaussian distribution with an ML estimator 

and a robust estimator [4] is shown. 

3.1 Mathematical derivation of MSE 

Consider the parameter estimation [3, 4] of θ 

and an estimator ),,(ˆ  g  with )}ˆ({  QE . 

There are n independent samples. Q(·) could be a 

mean square error or a mean absolute error function; 

the MSE is used for this paper. The MSE is 

expressed in the following form for nominally 

stationary data (  MSE0 ): 
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which is recalled from Equation (27) of [4], 

expressed using the following form again 
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where f(x) is the univariated density of the 

nominal i.i.d. data, the Gaussian distribution in this 

paper. Taking the inverse of the MSE is 

performance. Function h(x) will be explained in (4), 

later. 

3.2 ML and robust estimator of Gaussian 

distribution 

The estimators under consideration are derived 

from, whenever possible, unbiased ML estimators, 

which are not robust. In order to induce a robust 

estimator, Huber-type data censoring is employed. In 

accordance with the original estimator being 

unbiased for cases of Gaussian data, the variance is 

estimated when the data are nonstationary but 

independent. 

Consider the zero-mean Gaussian distribution, 

the unbiased ML variance estimator is 

 

2

1

2 )(,
1

ˆ xxhx
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The robust estimator with h(x) is given by 
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The specific integral parts of the MSE for the 

robust estimator recalled from (28) and (29) of [4], 

are 

 


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 dxxfxh )()(  
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Where f(x), the Gaussian distribution, is 

)
2

exp(
2

1
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2



x
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Computation of (2) with these equations is 

possible using MAPLE. 

 

IV. Generalized Gaussian distribution 

4.1 Understanding of generalized Gaussian 

distribution 

The first step here is to consider situations with 

known variance and to compute actual MSE values 

for the estimators, because the underlying 

distribution varies away from the nominal Gaussian 

distribution due to the aforementioned known 

variance. The key to obtaining tractable results here 

is to model the variations in a way that admits 

computation of the MSE and yet allows a smooth 

morphing of distributions away from the Gaussian in 

directions that are both more heavy-tailed and more 

light-tailed. To do this, the family of zero-mean 

generalized Gaussian distributions is chosen, i.e., a 

family with density of the form 

 

)exp()(
c

x
dxf

a

 .                                    (8) 

 

It should be noted that f(x) is a Gaussian 

distribution at a = 2, a Laplace distribution at a = 1, 

and resembles a Cauchy distribution when a 

approaches 0. For a > 2, the distribution becomes 

increasingly light-tailed, and for a < 2 it is 

increasingly heavy-tailed. The heavy-tailed densities 

are expected to place stress on the estimators; as a 

result, more values of a < 2 than a > 2 will be 

considered. It should be noted that with this 

generalized Gaussian distribution a model that can 

pair distributions with real numbers a > 0 is shown. 

In order to measure the MSE of the generalized 

Gaussian distribution, (8) is used instead of (7). 

Computation of (2) with (5), (6), and (8) is then 

possible using MAPLE. 

4.2 Plotting MSE versus constant a of 

generalized Gaussian distribution 

The MSE is plotted as a function of the real 

number a; specific examples of the generic graph are 

illustrated in Fig. 1. For an equitable comparison 

constants c and d are chosen so that as a varies, θ  



 ))(( 2 dxxfx  of the random variable is kept 

constant. 

For fixed actual variance θ, the MSE is plotted 

as a function of constant a and it can be seen how 

flat the graphs are; as indicated in Section 2, steep 

slopes indicate lack of robustness. It should also be 

remarked that any comparison of the graph of one 

estimator to another should be made with the 

understanding that the robust estimators have bias, 

and so even though the ML estimator for Gaussian 

data is efficient, its MSE may not be minimal when 

compared to the biased estimators. The procedure is, 

for fixed a and θ, to search for corresponding c and d 

that yield a variance of θ for the operative 

distribution; then, it is necessary to use these c and d 

values to compute the MSE for the estimators. 

Because of the sensitivity of θ to c and d, the search 

should stop when θ has been approximately 

achieved. Table 1 illustrates the choices of c and d 

for various a and for θ = 0.5, 1.0, 2.0, and 5.0. 
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Table. 1 Coefficients of generalized Gaussian 

distribution 

 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.50 

θ 0.5 

c 0.26 0.38 0.50 0.62 0.76 0.88 1.00 1.30 

d 3.50 1.50 1.00 0.78 0.65 0.60 0.56 0.50 

θ 1.0 

c 0.30 0.48 0.71 0.96 1.30 1.60 2.00 3.10 

d 2.78 1.12 0.70 0.55 0.45 0.43 0.40 0.35 

θ 2.0 

c 0.38 0.15 1.00 1.50 2.20 3.00 4.00 7.50 

d 1.77 0.72 0.50 0.38 0.32 0.30 0.28 0.25 

θ 5.0 

c 0.45 0.90 1.60 2.60 4.10 6.40 10.0 24.0 

d 1.25 0.48 0.31 0.25 0.22 0.20 0.18 0.15 

 

4.3 Measuring Robustness 

With constant values chosen in this way, the 

MSE is calculated using (2). Fig. 2 - Fig. 5 illustrate 

plots for the MSE versus a with the same θ. In each 

graph, the value a = 2 should be regarded as 

nominal, because the estimator was designed using a 

Gaussian model. It should be noted that in all cases 

there is more variability in the MSE as a becomes 

smaller, i.e., as the data become more heavy-tailed. 

 

 

 

Fig. 2 MSE of Generalized Gaussian 

distribution, θ= 0.5. 
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Fig. 3 MSE of Generalized Gaussian 

distribution, θ= 1.0. 

 

 

 

 

Fig. 4 MSE of Generalized Gaussian 

distribution, θ= 2.0. 
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Fig. 5 MSE of Generalized Gaussian 

distribution, θ= 5.0. 

 

In addition, for heavy-tailed data the MSE 

becomes larger than for the nominal case. On the 

other hand, for light-tailed perturbations the MSE is 

not highly variable and decreases from the nominal 

MSE value. This confirms the expectation that 

heavy-tailed data put great stress on the estimator, in 

terms of both performance and robustness 

(quantitative values of robustness are not shown 

here), whereas light-tailed perturbations typically 

present little problem for the estimator. 

The graphs indicate that if a considerable lack 

of knowledge exists in the heavy-tailed direction, 

i.e., if strongly heavy-tailed perturbations are 

regarded as possible, then heavy censoring (small k) 

should be employed when substantial lack of 

robustness is present, such as when n is small. But, 

in other cases, such as for large n, much less MSE 

variability is seen, and in these situations less 

censoring (large k) is appropriate in order to avoid 

compromising performance. 

Measuring the robustness of a system with the 

chosen k value of the robust estimator is possible. 

For θ = 1, n = 5, and k = 1.46, if the MSE of the 

system output is larger than 0.5, the system is not 

robust. 

It should be remarked that the graphs should not 

be used to compare k values directly because of the 

varying bias, which can compromise the field 

performance of the estimator. The important thing is 

the shape of each curve the flatter the curve the more 

robustness there is, and so if the curves are relatively 

parallel for many choices of k, then it makes sense to 

choose a larger value of k, which will  bring us 

closer to the unbiased ML estimator. For n = 5 

shown in Fig. 4 and Fig. 5, k = 1 is over censored. 

 

V. Conclusion 

The previous work measured robustness on its 

own distribution; however, measuring robustness 

with a robust variance estimator by censoring height 

on a generalized Gaussian distribution is introduced 

in this paper. The MSE is measured with an 

unbiased ML variance estimator and a robust 

variance estimator of the Gaussian distribution on 

the generalized Gaussian distribution. Then, the 

MSE is plotted according to the constant of the 

generalized Gaussian distribution which represents 

Gaussian, Laplace, and Cauchy distributions. This 

measuring of MSE with the given censoring value 

indicates the system robustness which tells us the 

stability of a system when the system distribution 

changes. 
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